Windmill Palm Fiber/Polyvinyl Alcohol Coated Nonwoven Mats with Sound Absorption Characteristics

نویسندگان

  • Changjie Chen
  • You Zhang
  • Guangxiang Sun
  • Jiayi Wang
  • Guohe Wang
چکیده

Windmill palm single fibers (WPSFs) and fiber bundles (WPFBs) were extracted from a windmill sheath mesh. For the palm fiber acoustic application, WPSFs/WPFBs nonwoven materials and windmill palm fiber (WPF)/polyvinyl alcohol (PVA) coated nonwoven mats were developed. The effects of conditions such as the thickness and surface density of the materials and the concentration of PVA were studied. The sound absorption coefficients of all of the samples were measured using an impedance tube instrument. The statistical significance of the differences between these materials was tested using Duncan’s grouping method. Based on the results, the windmill palm fiber can be regarded as appropriate for use as a sound absorbing material. The addition of PVA was an effective way to improve the acoustic properties of the WPF/PVA coated nonwoven mats. This coated mat exhibited a greater ability to absorb sound than WPSFs/WPFBs nonwoven materials. The acoustic properties of the materials exhibited good results, with an average sound absorption coefficient of 0.38 when the concentration of PVA was 1 wt.%.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploration of the Origin of the UV Absorption Performance of Windmill Palm Fiber

This study aims to investigate the ultraviolet (UV) absorption property of palm fiber and to reveal the mechanism underlying its UV-shielding behavior. The UV spectra of various solvent extracts of palm fiber were investigated. Fourier transform infrared spectroscopy (FTIR) and UV spectra were used to analyze the treated palm fiber, 100% α-cellulose, and raw palm fiber. The UV absorbances of pa...

متن کامل

The Influence of Fiber Crimp on Acoustic Performance of Polypropylene Fibrous Batt

This paper reports on the effect of fiber crimp frequency on sound absorption capability of staple polypropylene nonwoven batts. Stuffer box was used to impart crimp to spun tow. Crimping of the tow renders the fibers the required textile applicability. In this work, polypropylene batts composed of staple fibers with linear densities of 9, 14, and 18 denier were employed. Three crimp frequency ...

متن کامل

Experimental study and modelling of date palm fibre composite acoustic behaviour using differential evolution algorithm

Background and aims: In recent years, in most countries of the world, the provision of a calming environment without disturbing noise has become a need, which has subsequently led to significant growth in noise control techniques. It is now well documented that prolonged over-exposure to the excessive levels of environmental noise not only induces disabling hearing impairment but also contribut...

متن کامل

Acoustical evaluation of carbonized and activated cotton nonwovens.

An activated carbon fiber nonwoven (ACF) was manufactured from a cotton nonwoven fabric. For the ACF acoustic application, a nonwoven composite of ACF with cotton nonwoven as a base layer was developed. Also produced were the composites of the cotton nonwoven base layer with a layer of glassfiber nonwoven, and the cotton nonwoven base layer with a layer of cotton fiber nonwoven. Their noise abs...

متن کامل

Palm kernel fruit fiber reinforced gypsum-cement based wall panels: It’s physical and mechanical characteristics

Agricultural waste fibers have been found to be suitable as reinforcement in cement-based composites, but studies on oil palm fiber as reinforcement in gypsum-cement wall panels are scarce. A mixture of two equal weights of gypsum and cement, with water-binder ratios of 0.45 and 0.55 were prepared. In each mix a varying percentage of fiber contents of 2%, 3% and 4% by weight of the binders were...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016